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by 
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SUMMARY 

The effect of a horizontal magnetic field on the equilibrium of an 
inviscid, perfectly conducting, stratified plasma under uniform rotation 
is investigated. The equations of the problem are established when both 
the density and magnetic field vary with the vertical distance. Then 
special density distributions a r e  studied, first a layer of stratified 
plasma and secondly, a configuration of incompressible fluid topped by 
a stratified compressible fluid. Criteria of instability are derived. 
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HYDROMAGNETIC STABILITY OF STELLAR ATMOSPHERES* 

by 
Satya P. Talwart 

Goddard Space Flight Center 

1 INTRODUCTION 
I 

The problem of the hydromagnetic stability of a conducting fluid of variable density, subject 
to a gravitational field, is of considerable interest in plasma confinement and astrophysical appli- 
cations. It has been investigated in recent years by several workers (References 1-6). In particu- 
lar, the problem is relevant to the stability of stellar atmospheres in a magnetic field. The 
present paper investigates the effect of a horizontal magnetic field on the equilibrium of an in- 
viscid, perfectly conducting, compressible fluid of variable density. The entire configuration is 
assumed to partake in a uniform rotation, in view of the important role which Coriolis forces 
play in various astrophysical situations. We shall establish the general equations of the problem, 
assuming that both the density and the horizontal magnetic field vary in the upward direction. Two 
special cases of density distribution will be considered, a layer of stratified plasma and a con- 
figuration of incompressible fluid which is topped by a stratified compressible fluid. 

EQUATIONS OF THE PROBLEM 
+ 

Consider a system of Cartesian axes with the z-axis in the vertical direction. Suppose that 
a horizontal magnetic field H, (stratified upwards) exists along the x direction in a compressible 
fluid with a variable density in the upward direction. The configuration is assumed to rotate uni- 
formly with an angular velocity R about the z-axis. 

The equation of motion with respect to a rotating frame of reference is writtenf 

where u and H denote the velocity and the magnetic field vectors and P , P ,  and 9 denote the 

*This  report supersedes Goddard Space Flight Center Document X640-64-39. 
tDr. Talwar is a National Academy of Sc iences  - National Research Council Postdoctoral Senior Research Associate  with the NASA. 
SEquation 1 should, strictly speaking, include the centrifugal force term which contributes both in the equilibrium and the perturbed 

s tate .  The results obtained, though exact  for zero rotation, hold only for small s c a l e  lengths in the presence of small rotation. 

1 



pressure, density at a point, and acceleration due to gravity, with the component -g in the z- 
direction (g even may denote the net acceleration downward in the case of an acceleration imposed 
in addition to gravity). The symbol p represents the permeability of the medium. 

The equation for the continuity of matter is 

The adiabatic equation (conduction of heat neglected) is 

= o  

Y denoting the ratio of specific heats. Furthermore, for a perfectly conducting fluid 

and finally we have the equation 

V * H  = 0 .  (5) 

The equilibrium state is characterized by = 0. For investigating its stability, we shall 
consider the effect of a small velocity field disturbance U ,  with components U ,  V, and w in the 
X ,  y ,  and z directions, respectively. Then 

where Sp, Sp, and 
than the first and their mutual products can be neglected. It is assumed that the components of 
the disturbance vary with X, y ,  Z ,  and t as some function of z times exp ( i k x x  + i k y y  + nt) where 
kx and k y  denote the horizontal wave numbers of the harmonic disturbance and n determines the 
stability of the configuration. Thus the perturbation equations can be written 

denote perturbations of the first order of smallnes-, so that powers higher 

/L nPou = - ikxSp + ?F;; h Z M ,  + 2povR , 

npov = - iky6p  + P H, ( ikxhy - i k y h x )  - 2 p , d  
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,P"o 1 DH" \ 
npow = - D6p - g6p -4n (Dhx - ikxhE + hx F) , 

*X = -(Hoikyv + wDH, + H,Dw) , (12) 

nhy = Hoikxv , 

nhz = Hoikxw , 

ikxhx + ikyhy + Dhz = 0 . 

1 
D stands for d/dz and c for the velocity of sound (ypo/po)T for the medium. Equation 11 is ob- 
tained from Equation 3 by making use of Equation 10 and of Equation 1 for the static configuration. 

We now shall derive an equation for the component w of the velocity vector. Equations 7 and 
8 are multiplied by ikx and iky , respectively, and then added to give 

(16) 
P npo(V * u  - Dw) - 2p,@ - [ikxhzDH, + ikyH, (ikxhy - ikyhx)] = k2 sP , 

where 

kZ = k: + k,' , 

5 = ikxv - ikyu 

The perturbation 6p is eliminated from Equations 9 and 16 by multiplying the former by k2, 
operating on the latter by D , and adding. By using Equation 10 

P P + HokZ(Dhx - ikxhz) += kZhxDH, = 0 . 
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The magnetic terms in Equation 17, on using Equations 13-15, reduce to 

Thus Equation 17 becomes 

[ +%) (D’ - kZ)w t- 
PO 

2n k:VZ DH, 

“PO n2 T + - D ( p o ( )  - W * u  + 2- D w = o ,  

I 
where v denotes the Alfvdn velocity ( ,d1; /4~p~) 

from Equation 11. After some algebraic calculations including the use of Equations 12-16, it is 
found that 

. The expression for D now can be obtained 

,2 k ‘V2 n’ 0 . u  ( 1 + -  CZk2 + %) = - 
c’k’ 

The expression for 5 can be obtained by multiplying Equations 7 and 8 by -iky and ikx , respec- 
tively, and adding. With the use cf Equations 12-15, 

(n’ + k: V’)c = 2 M l w  + D - u  [ikxikyV2 - 2 h ]  

Combining Equations 20 and 21 finally gives 

v . u [(n’ +k: V’) (n’ + c’k’) + n’ (4n’ + ky’ V2)3 = (n’ + k: V’)(n’Dw + gk’w) + 2 h D w  (ikxikyV’ + 2 h )  (22) 

By using Equations 21 and 22 and V may be eliminated from Equation 19. Thus the 
equation for component w of the velocity perturbation vector may be determined. However, for 
simplification it will be assumed that the velocity of sound c and the local Alfven velocity v are 
independent of the vertical coordinate z (i.e., the horizontal field is so stratified in the z direction 
that the ratio ~,2/p,  remains constant throughout the stratified plasma). It should be mentioned 
that the equation determining the initial state of the configuration of an isothermal ideal gas can be 
satisfied with the stratification formulas 
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where the constant p is given by 

With the mentioned simplification, Equation 19 determining w is (after some added simplifi- 
cation) 

2 k  ( ikx ikyV2 - 4R2n2 
. {n’ + k:V‘) f (n’ f k: V’) - [n2 - (n’ f kx V ) 

>’ wk2 = . (25) 
n2(n2 + k:V2) f 2Rn (mn + ikxikyV2) 

(n’ f k:V2)(n2 + k2c2)  + n2(4C12 f k;V2) 

Now two special cases will  be considered-the hydromagnetic stability of (1) a continuously 
stratified layer of plasma, and (2) a configuration of two superposed fluids, the lower a homo- 
geneous liquid and the upper a stratified gas. 

HYDROMAGNETIC STABILITY OF A ROTATING 
STRATIFIED LAYER OF PLASMA 

Here the special case will  be considered in which an inviscid, infinitely conducting layer of 
plasma is confined between two perfectly conducting, rigid horizontal wal ls  at z = 0 and z = 1 ,  

the fluid having the density and field variations given by Equation 23 so that the sound speed c and 
the Aflven velocity v a re  independent of height. 

The solution of Equation 25 is of the form, 

w(z)  = Aeml’ f Bemzz , 

where A and B a r e  constants to be determined from the boundary conditions and m l  and m2 are 
the roots of Equation 25. The boundary conditions are that the normal components of velocity and 
of the magnetic field should vanish at both z = 0 and z = I .  Thus, 
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and so 

(m, - m 2 ) l  = 2ain , 

where a is an integer. Equation 28, with Equation 25, enables us to write the dispersion formula 
in the general case, which agrees when c - 00 with the one obtained in an earlier paper (Refer- 
ence 6). However, the dispersion relations for three special cases will be considered, namely 
(1) no magnetic field, both kx and ky nonzero, (2) kx  = 0, k y  f 0 (interchange perturbations) in 
the presence of a magnetic field, and (3) k y  = 0, kx # 0 ,  again in the presence of a magnetic field. 

Compressible Rotating Stratified Configuration with No Magnetic Field 

This is purely a gas-dynamical case and the dispersion relation is 

n4 + n2[k2c2(1  + E) + 40'1 + k2(4R2Ec2 - g2 - @c2) 0 (29) 

where E = (4a27r2 + p21 ')/4k21 2. The parameter p in the above equation is given by (cf. Equa- 
tion 24) 

and it follows that the last term in Equation 29 is positive. Thus, the configuration is thoroughly 
(for all k ) stable as would also be the case if the rotation were absent. Therefore Equation 29 
describes the propagating waves in a uniformly rotating, stratified, compressible fluid in a gravity 
field, with constant sound speed c . It can be easily verified from Equation 29 that rotation adds 
to the stability of the configuration, the effect being more pronounced on long wave perturbations. 
It follows that 

for k - 0 ,  and 

for k - m. 
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A Stratified Plasma with a Horizontal Field for 

Interchange Perbations Perturbations kx  = 0, ky = k 

For this case the dispersion relation can be written 

n4 t nz[,z(cz t V z ) ( l  t E) t 4nz] + k2[402E(cz t Vz) - &(c2 t V z )  - gz] = 0 . (33) 

Again, since p = -g/[vz/2) + (c~ /Y)]  , it readily follows that the roots (nZ ) of the above equation 
are both negative real, implying stability. 

It is seen from the above equation that 

for k - 0, and 

for k - m. 

Thus, a rotating layer of plasma with constant Alfven and sound speeds is stable for inter- 
change perturbations. However, the perturbations characterized by a nonvanishing kx may bring 
about instability. Therefore, the stability of this configuration now will be investigated for per- 
turbations with ky = 0 ,  kx = k .  

A Stratified Plasma with a Horizontal Field for ky = 0, kx = k 

For a uniformly rotating plasma layer confined between two rigid walls and subject to a hori- 
zontal magnetic field and vertical gravity field, so that the Alfven and sound speeds are constant, 
the dispersion relation is 

n6 + n4kz[(cZ t V z ) ( l  + E)  t Vz + 402/kz] 

t nZkZ k z V Z ( l  + E ) ( 2 c Z  t V') - (g&' + g z )  + 4nz[Vz + ( C z  + Vz)E]} { 
+ k4V2 [kzV2c2 ( 1  + E)  - ( &cz + g')] = 0 (36) 

where p is given by Equation 24. 
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If the rotation is zero, Equation 36 reduces to 

(37) n4 + n’k’(1 t E) (c’ + V’) t k2[k2(1 + E) c’V’ - (g’ + $.’)I = 0 . 

Equation 37 admits real roots for n’ which are both negative, implying stability, if  the coeffi- 
cient of the last term is positive. For this to occur we should have either (1) (gz + $$) < o 
characterizing the medium, o r  (2) the wave number of perturbation greater than a critical value 
k, ( =2n/A, ) given by 

Therefore, the instability in the configuration arises only for k < k, . 
It follows that a static unbounded, semi-infinite plasma is stable for all modes of perturbation 

if the prevailing horizontal field (at z = o ) is less than a certain critical value H, , obtained by 
setting k, = 0 in Equation 38. We obtain 

N and T denote the particle density and the temperature of the medium, and K is Boltzmann’s 
constant. Table 1 gives the values of the critical field above which instability exists for  k < k, 

for  a few physical situations, with y = 513. Figure 1 gives a plot of the critical wavelength in 
units of c2 /g  (above which the configuration is unstable) vs. cZNZ for an indefinitely extended 
plasma. The effect of boundaries (finite I ) is to diminish k,, and therefore is stabilizing. It is 
interesting to note from Figure 1 that there exists a minimum value of critical wavelength, given 
by A, 2 18 c’/g so that wavelengths shorter than this value cannot be destabilized by a magnetic 
field. The results for the calculation of the growth rate of a mode of perturbation as a function of 
the magnetic field in the unstable situation of an unbounded plasma are shown in Figure 2 where 
n/kc is plotted against Vz/cz for B(=g2/4kZc4) equal to 4 and 6. The curves show that (1) an in- 
crease in gravity increases the growth rate of instability of a prescribed wavelength perturbation 

Table 1 

The Critical Fields for Several Cases. 

Physical Situation 

Interplanetary matter 
Planetary nebulae 
Solar corona 
Solar chromosphere 
Laboratory plasma 

Critical field H. (gauss) 

- 2  x 

= 2  x 10-3 

= 6 X IO-’ 

= 10 

= 6 x l o 4  

(in the range A, to m) for any magnetic field, 
(2) for a certain magnetic field the growth 
rate at the given wavelength is maximum, and 
(3) this magnetic field and the corresponding 
growth rate both increase with the gravity 
field. 

Again it follows from the dispersion re- 
lation (Equation 37) that a mode of maximum 
instability exists in the unstable range 0 to 
k, of the wave numbers. To compute the 
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Figure 1 -The critical wavelength k, (in units of g/c2) 
as a function of c2/V2 for a semi-infinite stratified 
plasma. 

growth rate as a function of wave numbers let 
us  write the dispersion relation (Equation 37) 

0.9 
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n 
kc 
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0.1 

0 
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- V 2  
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Figure 2-The plot of n/kc against V2/c2 for 
B (=g2/4k2c4) equal to 4 and 6 (curves a and 
b respectively). 

0 

for  a finite layer of plasma in dimensionless form, by measuring n and k respectively in units 
of TV/L sec-' and v / i  cm". We have 

n4 + n 2 ( 1  + M)(k2 + aZ) k2[M(k2 + a 2 )  - b(M + a)] = 0 , (40) 

where M = c2/V: b = gpz2/T2v2, and a = g/pvz are pure numbers. It is assumed that Ipi 1 << 1,  

which implies that the total change in density between z = o and z = i is much less than the 
average density. The calculation of the positive root of Equation 40 has been carried out for a = 1, 

a = -10, b = -1, and M = 1.0 and 1.5. The results are presented in Figure 3. Curves of n 

against k show clearly that the maximum growth rate, nm , and the corresponding wave number, 
km , increase with a decrease in M .  Since the decrease in M is associated with a smaller tempera- 
ture of the medium it may be concluded that, for a given a and b, the effect of a decrease in 
temperature is to increase both the growth rate and the wave number of the mode of maximum 
instability. 
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HYDROMAGNETIC STABILITY OF AN INCOMPRESSIBLE FLUID 
TOPPED BY A STRATIFIED COMPRESSIBLE FLUID, WITH UNIFORM ROTATION 

In this section we shall investigate the effect of a horizontal magnetic field on the equilibrium 
of a configuration of two superposed (immiscible) fluids of semi-infinite extent which are uniformly 

rotating, inviscid, and infinitely conducting. 
1.3 The fluid occupying the region z < o is in- 

compressible and homogeneous with density 
1.2 - p2 and permeated by a uniform magnetic field 

H, along the x direction. The fluid in the 
region z > o is stratified vertically, with re- 
gard to the density and the magnetic field 
along the x-axis, in such a manner that the 
entire fluid is characterized by a speed of 
sound C ,  and Aflven velocity v, independent 
of height. Let p1 and H, denote the density and 
the field for the upper fluid at the level z = 0. 

Thus a current sheet exists at the common 
interface z = 0 .  

The perturbation equation for the incom- 
pressible fluid (Z < 0 )  is easily derived from 

0.61 I I 1 1 Equation 25by setting p = o andc  = co, 
0.5 1 .o 1.5 2.0 2 . 5  

WAVE NUMBER k 
(n'  + k:V?)' 

DZwz - kZwz = 0 , (41) 
(n' t k;V22)' t 4n2n2 Figure 3-The growth rate n (measured with the unit 

~ V / I  sec-' ) i s  plotted as a function of wave number k 
(measured with the unit T/I cm-' ) for a = 1 ,  taking 

b(=gpl2/'2v2) = -1 , a (=g/pv2) = -10 and M 
(=c2/V2) = 1.0 and 1.5 . where the subscript "2" stands for the lower 

fluid ( Z  < 0 ) .  

The solution of Equation 41 vanishing at z = --co is of the form 

w,(z) = De?' , 

where D is a constant and q, regarded as having a positive real part, is given by 

The perturbation equation for the top, compressible fluid is the same as Equation 25 whose 
solution under the boundary condition that w1 - o as z - m is 
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Wl(Z) = AernIZ (44) 

Here m l  , regarded as having a negative real  part, is 

where p is as given by Equation 24 and E is the coefficient of wk’ Equation 25. 

The boundary conditions to be satisfied at the common interface are: 

1. The normal component of velocity is continuous; i.e., in the present approximation W ( Z )  

is continuous at z = 0 ,  leading to A = D. 

2. The normal component of the magnetic field is continuous at the physical interface. This 
condition automatically follows, as can be readily verified. 

3. The pressure should be continuous across the interface, which requires that 

where 5 denotes the displacement of the interface given by (wl 1, =O,m , and’the subscripts 1 and 2 
refer to the upper and the lower fluids, respectively. 

On making use of Equations 12, 16, 21, and 22, we obtain for the upper, compressible fluid, 
at z = 0 ,  

t where 
I 

A[(n2ml + gk’) (n’ + k: V:) + %ml (% + ikxikyV:)] 

(n’ + k:V:)(n’ + k2c12)  + n2(4f12 + k:V:) ( v - u ) z = o  = 

Similarly, for  the lower, incompressible fluid at z 0 .  

(48) 

(49) 
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Thus, by utilizing Equations 42, 44, 47, and 48 and the above boundary conditions, the dis- 
persion relation for the case under investigation is found to be 

- 2fl(ikxiky 1 v? - m j  l n 2 m l  t gk2)(n2  + k: V12)  t 2 h m 1  ( 2 h  + 

1 -  n2 t k:V: (n' t k: V:) (n' + k'c,') + nz  (4f12 + k,' V:) 

- --JL 

where 7 and m l  are given by Equations 43 and 45, respectively, and E stands for the coefficient 
of wk2 in Equation 25. 

Equation 50 reduces to the dispersion formula obtained earlier (Reference 6) for a rotating 
configuration of two uniform incompressible fluids. It also gives the equations obtained by 
Vandervoort (References 7 and 8) for a nonrotating field-free configuration of superposed fluids 
(the lower fluid being incompressible), and for a uniform incompressible fluid topped by a strati- 
fied gaseous atmosphere. 

The dispersion relation, Equation 50, is extremely unwieldy in the general case. Therefore 
we shall investigate only marginal instability ( n  = 0 )  . By putting n = o in Equation 50 and making 
use of Equations 43, 45, and 25 with n2 equal to zero, after some simplifications 

For the case where k y  = 0 and kx  = k, from Equation 51, 

If H, = H, = H (no initial current sheet at z = 0 )  the following is the expression for the critical 
wave number: 
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I where 13 is given by Equation 24. if  the value of ,E from Equation 24 is used, tiieii Equation 53 
becomes 

1 + Mi [(l - a ) 2  - 0.5 + a M,y * 1  * J 
- - -  

1 
k*c; L' 

2(1 - a )  + g 
0.5 + M,y-' i 

(54) 

where u = p2/pl and M, = c12/v,2 . 
If a = 1 it follows from Equation 54 that k,  decreases linearly with an increase in M, (Le., 

l a decrease in the magnetic field), from g/2~: for M, o (i.e., an extremely high magnetic field) 
to zero for M, = 7/2(y - 1). Thus a configuration consisting of homogeneous liquid topped by a 
stratified atmosphere, so that no density discontinuity exists at the interface, is stable in the 
absence of a field and for small  fields with v2/c2 < 2(1 - y-l ). For fields exceeding that given by 
V2/c2 = 2( 1 - y- l ) ,  the situation is unstable and only wavelengths greater than the critical value 
& ( = 2 n / k .  ) result in instability. The critical wavelength depends upon the existing field and tends 
to a finite value h, = 4rcl7g for infinitely high magnetic fields. 

When u # 1, it easily follows from Equation 54 that the configuration is thoroughly (for all k) 
stable for u > 1 ,  and thoroughly unstable for u < 1, in the absence of magnetic field. For a < 1 

and in the limits of small and high magnetic fields, the configuration is unstable for k < k, . If 
a > 2, the situation is one of stability for high and low fields, whereas if 1 < a 5 2 , then 
k, = g/2(1 - 2a)c2 for M, = o and the configuration, though stable for vanishingly small fields, 
becomes unstable in the limit of high magnetic fields. 

(Manuscript received January 9, 1964) 
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